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UniSuper’s Approach to Risk Budgeting 
 

David H. Schneider; Dennis Sams 
 

ABSTRACT 

 

UniSuper(1) has developed a risk budgeting system that measures deviations from the Fund’s strategic 
asset allocation. The paper presents the mathematics used, a case study, and broad conclusions potentially 
applicable to institutional investors. 
 
Keywords: risk budgeting; factor analysis; marginal and proportional contribution to risk; return 

attribution; ex-ante alpha; collinearity; reverse optimisation. 
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1. INTRODUCTION 

 
At its simplest, risk budgeting is the process of setting a target level of risk to be accepted at the portfolio 
level, and allocating this risk across a number of investments in the most efficient manner in order to 
maximise returns whilst containing risk within agreed targets.  At the sector or asset class level, risk 
budgets are typically set in terms of a tracking error target for the overall sector (i.e. how much volatility 
around an appropriate sector benchmark would the Fund be prepared to accept in order to try and increase 
returns).  It is important to note that risk budgeting primarily provides investors with a framework for 
discussion and analysis.  It does not have to be (and indeed in the authors’ opinion, should not be) applied 
in a prescriptive fashion. 
 
This paper focuses on a single component of overall fund level risk management.  UniSuper has derived a 
formal Investment Risk Management Policy (IRMP) that sets out the Fund’s risk management 
philosophy, identifies key internal and external risks faced by the Fund, and the manner with which these 
risks are managed (UniSuper, 2005).  The Fund’s risk management initiatives span the public and private 
market areas, as well as the Fund’s strategic tilting and governance arrangements.  The risk classification 
framework and risk management initiatives underpinning UniSuper’s IRMP are graphically represented 
in the chart overleaf.   
 
UniSuper’s risk budgeting approach has been developed over a number of years, and focuses on 
measuring and managing the active risk accepted by the Fund (i.e. item 2.1 in the chart overleaf).  Details 
relating to UniSuper’s management of other components of risk within the Fund are outside the scope of 
this paper.  Much of the work undertaken by UniSuper is built up from prior work on risk budgeting (for 
example, Mina (2007) provides an outline of a risk budgeting framework, which formed the basis of 
much of the work in this paper; Litterman (2003b) describes a practical methodology for institutional 
investors; while Scherer (2000), Kozun (2001), Sharpe (2002), Banz (2003), de Bever (2003) and 
Berkelaar (2006) provide an overview of risk budgeting for institutional investors).  However, the authors 
extended prior findings by:  

• removing the simplifying assumption that excess returns between managers are uncorrelated (it is 
common for managers employing similar investment styles to perform in a correlated manner); 

• introducing the idea that to justify active risk, one needs to exceed a hurdle return in excess of 0% 
(described in more detail in the Appendix section A1.7); and 

• developed a method to help overcome the difficulties inherent with multiple collinearity 
(described in more detail in the Appendix section 4.2 and A1.2.4). 
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CHART 1. Schematic representation of the risks faced by UniSuper 
 

 
Source: UniSuper, 2005 

The above chart summarises the risks faced by UniSuper.  The Fund’s risk budgeting approach measures active risk accepted by the Fund, as highlighted in box 2.1.
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Due to the computational complexity of the Fund’s risk budgeting process, UniSuper has developed an 
in-house risk budgeting and factor analysis program, branded ‘The UniSuper Risk Budgeting and 
Optimisation System’ (TURBOs).  This paper outlines the objectives and logic underlying TURBOs, 
provides practical commentary as well as a worked example for the Fund as at 30 June 2008.   

2. MATHEMATICAL OVERVIEW 

 
TURBOs monitors the extent to which the Fund deviates from its Strategic Asset Allocation (SAA). 
UniSuper can invest passively and broadly match the beta exposures expected from each asset class.  
The extent to which the Fund employs active management, and the amount by which the Fund deviates 
from the passive benchmark position, represents a source of risk to the Fund.  The objective behind 
TURBOs is to identify and quantify this source of risk.   
 
UniSuper predominantly invests via fund managers, but the Fund does hold some investments directly.  
As such, for the purpose of this paper, we use the term manager and investment interchangeably. 
 
TURBOs has been designed so as to:  
 

• Determine how each investment or manager generates their returns;  

• Identify the market factor exposures for each manager and aggregate these to determine overall 
Option factor exposures; 

• Assess the expected future alpha (or excess return above benchmark) for each manager; and 

• Ensure that the Fund’s active risk is allocated appropriately between managers (i.e. such that most 
of the Fund’s active risk lies with managers who are expected to outperform their benchmarks). 

 

In order to meet the objectives, six processes need to be computed.  In particular, TURBOs: 
 
1. Attributes each manager’s returns between a series of market factor exposures (i.e. a beta 

component) and an observed ex-post (or historic) alpha component.  This step is resolved using 
factor analysis and multiple regression; 

2. Determines the ex-post total risk (or volatility) and tracking error for each Option, and assess the 
marginal and proportional contribution to that risk, from each manager; 

3. Uses Bayesian techniques to determine an ex-ante (or forecast) estimate of each manager’s alpha; 

4. Assesses the extent to which each Option’s beta exposure differs to the Fund’s SAA Benchmarks; 

5. Sets a minimum active risk target for each Option and assess the extent to which the hurdle is 
expected to be achieved; and 

6. Employs reverse optimisation to confirm whether the weight assigned to each of the Fund’s 
managers is consistent with the expected performance of the manager. 

 
Each of these six processes are described mathematically below.  The equations presented are 

developed in Appendix 1.  To assist the reader, we provide a glossary of notation in Appendix 2.  Note 
that equation references provided in parenthesis after each equation, relate to the order in which the 
equation is developed in Appendix 1. 



UniSuper’s Approach to Risk Budgeting 4 

 

 

2.1  Factor Analysis 

Regression techniques are utilised to derive ex-post estimates of the source of each manager’s total 
return.  Each manager’s return consists of a beta component along with an alpha (or return in excess of 

market factors) component.  Specifically:  ti
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a

ti

a

ti Fii

,
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ˆˆ εβαµ ++= ∑
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...(2.1.5) 

Where  

ia

ti,µ  
Denotes the observed return (before tax, net of fees) from manager i at time t, where manager 
i invests in asset class ai. 

ia

ti ,α̂  
Denotes the estimated ex-post return in excess of market factors, for manager i at time t, 
where manager i invests in asset class ai. 

ai Denotes manager i’s asset class. 

K 
Represents the number of all applicable factors.  Typical factors are returns on stock indices, 
interest rates, volatility, the risk free rate of return etc. 

tki ,,β̂  
Denotes the estimated beta factor describing the sensitivity between manager i’s exposure to 
factor k at time t. 

tkF ,  Denotes the observed returns from factor k at time t. 

ti ,ε
 

Denotes the manager’s residual error term or unexplained returns, with a zero mean. 

 
The alpha and beta parameters from equation 2.1.5, are estimated using the techniques outlined in 
section 2 of Appendix 1 (refer equation 2.3.2).  Once each manager’s alpha estimate and beta factors 
are obtained, standard statistical techniques are used to test the goodness of fit. 
 

2.2  Marginal and Proportional Contribution to Risk 

Each Option’s risk (or volatility) can be estimated by considering historic data.  The total ex-post 

variance of returns for each Option is defined as 
to ,

2σ̂  and is derived in equation 3.2:  
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Where 

iao

tiw
,

,  Denotes the manager i’s weight in Option o at time t  (i.e. percentage holding, weighted by 
Funds Under Management).  

tij ,σ̂  Denotes the estimated covariance of returns (gross of tax, net of fees) between manager i and 
manager j at time t, with an adjustment to allow for manager i and j’s auto-correlation. 

N Denotes the total number of managers spanning all asset classes. 

 
The covariance between each Manager’s returns explicitly allows for auto-correlation, and the formula 
for the covariance is presented in equation 3.1.  Each manager’s marginal contribution to risk amounts 

to: ∑
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2.3  Ex-Ante Alpha Estimation 

Each manager’s ex-post alpha is estimated during the factor analysis calculation.  However, ex-post 
data is not a reliable guide to estimate future alpha expected to be generated by managers.  To account 
for UniSuper’s internal view as to each manager’s skill, a Bayesian approach is required.  The authors 
adapted the Black-Litterman Model (BLM) so as to derive ex-ante alpha estimates for each manager.  
The workings behind the adaptation of the BLM are discussed in Section 4 of Appendix 1, and derived 
in equation 4.2.9: 

α̂ = ( ) ( ) 





Ω+ΑΨ





Ω+Ψ

−
−−

−
−

AAA Q
1

1
1

1
1 ˆˆ ττ ...(4.2.9) 

Where:  

α̂  
Denotes the vector of each manager’s expected ex-ante alpha returns.  Each element of the 

vector is given the symbol ]ˆ[ ,
ia

tiE α . 

]ˆ[ ,
ia

tiE α  Denotes the ex-ante expected alpha from manager i, who operates in asset class ai at time t. 

Α  

Denotes the vector of observed ex-post alpha or excess returns for each manager, derived 
using factor analysis from equation 2.1.5.  Note that this vector can alternatively represent 
the equilibrium excess return for each manager (which would then be a null vector, and the 

term ( ) 





ΑΨ

−1ˆτ would be removed from equation 4.2.9.) 

Ψ̂  
Denotes the covariance matrix of each manager’s ex-post returns in excess of their factor 
exposures. 

τ  Represents the scaling factor applied to Ψ̂ which measures the uncertainty of the historic 
data. 

AQ  
Represents a vector containing the investor’s view of the expected alpha generated from each 
manager along the diagonal elements. 

AΩ  
Represents a square matrix containing the investor’s confidence in its view of the expected 
alpha generated from each manager along the diagonal elements. 

2.4  Return Attribution 

By combining and weighting the Fund’s exposure to all N managers we can derive the ex-ante expected 
return for Option (o) and attribute this return between a variety of sources.   
 

Within the set of available beta factors { }K

kkF
1=
there is a sub-set of M factors that relate to the Fund’s 

benchmark for each asset class (as an example, for the Australian Equity asset class, UniSuper’s current 
benchmark is the ASX 300 Accumulation index – which in turn is a potential beta factor for all 
Australian equity managers).   
 

Let { }M

mmBM 1

*

= denote the set of strategic benchmark factors, for each of the Fund’s M asset classes.  

Then one can determine the manner in which each beta factor maps onto the Fund’s strategic 
benchmark factors as follows: 

tk

M

m

tmkmktk BMRPF ,

1

*

,,,
ˆ νγ ++= ∑

=

…(5.1) 

Where  

kRP  
Denotes the risk premium available from Factor k which cannot be attributed to one of the 
Fund’s benchmarks. 

km,γ̂  Denotes the estimated sensitivity between factor k and the mth asset class benchmark. 

tk ,ν  Denotes the residuals of the regression solution, with a zero mean. 
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The risk premia and the km,γ̂  coefficients are estimated in the same manner that was used to derive the 

factors from equation 2.1.5. 
 
By combining equations 2.1.5, 4.2.9 and 5.1, we can derive the expected return for each option 
expressed as a function of: 
 
a) The weighted average of each manager’s expected ex-ante alpha; 

b) The weighted average exposure to the Fund’s SAA benchmarks; 

c) Extraneous beta risk premia from factors that differ to the Fund’s SAA benchmark; and 

d) An error term. 
 

If 
o

tR denotes the ex-post (or historic) return from  Option o at time t, then: 
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The above equation is central to the Fund’s factor analysis.  In particular:  

• The term 
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, α̂ denotes the weighted average ex-post alpha observed from the Fund’s 
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credit risk, value, small cap biases, sector bets etc); and 
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,
ˆ ενβ , represents the error or residuals of the various 

regression estimates (with a zero mean).  The distribution is critically examined to ensure that it is 
sufficiently normally distributed.  Evidence of extreme kurtosis or skewness, could be cause for 
concern. 
 

2.5  Risk Budgeting 

Risk budgets have traditionally been derived by most practitioners with reference to a maximum 
permissible tracking error.  This approach is appropriate for asset managers whose mandates are often 
specified in terms of tracking error limitations.  However, the concern with this approach for institutions 
with guaranteed liabilities is that there is no direct interaction between the maximum tracking error and 
the Fund’s liabilities.  In addition, the choice of an appropriate tracking error budget is subjective.  As a 
result, the authors have derived an alternative approach to risk budgeting.   
 
The Fund sets its SAA so as to best meet the investment objectives (for the Accumulation Options) and 
pay liabilities as they fall due (for the Defined Benefit Division).  Hence any deviation from the Fund’s 
SAA represents a source of risk to the Fund.  Specifically, introducing active management adds risk to 
the Fund.  The marginal increase to risk is only justifiable if the Fund’s expected (or ex-ante) alpha 
exceeds the benefit that could be obtained by changing the Fund’s SAA benchmarks, and moving along 
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the Fund’s constrained efficient frontier.  This idea (discussed in more detail in Section 7 of Appendix 1 
and graphically in the chart below) provides an inequality that is used in our risk budgeting formulation, 
namely that each option’s ex-ante alpha needs to exceed a minimum hurdle to justify a departure from 
beta allocations.   
 

Comparison of The Accumulation Options' Risk and Return Profile

Relative to the Efficient Frontier - Risk Neutral Conditions
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In section 7 of the Appendix, we derive an inequality linking the ex-ante alpha to the Fund’s SAA, and 
its constrained efficient frontier: 
 

δσ

σδ

σσ

α )(

ˆ'

ˆ'

2

O

oo

EF

ww

w
≥

−Ψ+
...(7.1) 

 

Where 
2

oσ represents Option o’s variance, based on the SAA long term weights invested in the 

benchmark for each asset class and 

O
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σσδσ

δ

δσ

σδ

=

=
)(

equals the derivative or slope of the 

constrained efficient frontier, with respect to the volatility of the frontier, solved when Oσσ = .  Note 

also that Ψ̂  in this equation denotes the covariance matrix of each manager’s returns in excess of the 
benchmark. 
 
 
The table below summarises the minimum hurdle for each option, along with the minimum excess 
required alpha to justify using active management as opposed to increasing risk by changing the Fund’s 
SAA. 
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Table 1: Minimum required alpha for differing Accumulation Options 
 

Derivative of 
constrained 

efficient frontier 

Minimum required alpha ( α̂'w ) 

under differing Option tracking 
error levels Accumulation Option (o) 

δσ

σδ )( OEF
 1.00% 1.50% 2.00% 

Cash 3.81 3.81% 5.72% 7.62% 

Capital Stable 0.45 0.45% 0.68% 0.90% 

Conservative Balanced 0.34 0.34% 0.51% 0.68% 

Balanced 0.28 0.28% 0.42% 0.56% 

Growth 0.26 0.26% 0.39% 0.52% 

High Growth 0.14 0.14% 0.21% 0.28% 

 
As can be seen in the above table, each Option’s required minimum ex-ante alpha varies according to 
the curvature of the efficient frontier as well as the tracking error for the Option, relative to the Option’s 
benchmark.  Hence if the observed option risk is 2% (say) higher than that which would have occurred 
had UniSuper invested passively for the Balanced Option, then the minimum required excess return for 
the Balanced Option (to justify a departure from the Option’s SAA) would amount to 0.56%. 
 
TURBOs computes the ex-ante alphas, using equation 4.2.9, together with the ex-post tracking error for 
each Option and contrasts these to the minimum hurdle (provided by equation 7.1) to ensure that the 
Fund remains comfortable with its manager line-up. 
 

2.6  Reverse Optimisation 

Equation 7.1 can be adapted to obtain an optimal manager line-up (denoted by 
*

w ).  Such a portfolio 

would have the highest risk-adjusted return whilst simultaneously meeting the minimum hurdles 
derived in section 3.5 above.  The adaptation is derived in section 7 of the Appendix. 
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…(7.4) 

 

Once 
*

w has been calculated, UniSuper contrasts the Fund’s actual manager weights per Option to that 
derived by TURBOs, to determine whether the Fund remains comfortable with the current manager line 

up.  Note though that 
*

w is calculated separately for each asset class and not for the overall fund, and 

that Ψ̂  denotes the covariance matrix of each manager’s returns in excess of their benchmark. 
 
 

3. CASE STUDY 

In this section we present the findings from an analysis undertaken using UniSuper’s manager line up as 
at 30 June 2008, along with the Fund’s historic data.  The case study provides detail on the Fund’s 
Australian shares managers, along with summarised findings for other asset classes.  The analysis 
considers monthly historic returns over the three years ending 30 June 2008. 
 
Considerations relating to practical adjustments and allowances required for alternative assets as well as 
for details pertaining to the calibration of the BLM are discussed in section 4 of this paper.  
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3.1.  Factor Return Attribution 

The first process utilised by TURBOs is to attribute each managers’ returns between market factor 
exposures (i.e. the beta component) and an observed ex-post (or historic) alpha component.  The 
estimated factor exposures and alpha are determined using multiple regression.  For each manager’s 
alpha estimate and beta factors selected, statistical measures are provided to test the goodness of fit.  
TURBOs assesses each manager in turn, utilising a backward elimination algorithm, to find an optimal 
fit to the market factors.  The algorithm eventually selected by the authors is described in Appendix 1.  
The factors used include index returns by market capitalisation, style (value and growth), momentum 
and sectors, but remove the impact of higher order factor correlations, as described in Appendix 1.  The 
table overleaf displays each of UniSuper’s Australian shares manager’s exposures to the various beta 
factors.  A positive allocation indicates a bias to the factor, whilst a negative allocation suggests a bias 
away from the factor.  The last column provides the aggregated exposures for UniSuper’s Australian 
shares portfolio as at 30 June 2008.     
 
The primary beta used is the ASX 300 (the benchmark for the portfolio).  UniSuper’s overall Australian 
Shares portfolio had a beta of 0.97.  The portfolio is currently structured with a large beta exposure 
overlaid by meaningful alpha.  The significant beta exposure is consistent with the largely long-only 
approach adopted by the Fund and the requirement on incumbent managers to remain as close to fully 
invested as possible.  Pleasingly, there is minimal residual kurtosis, indicating that over the period 
analysed, there have been few extreme moves relative to benchmark.  At an overall portfolio level, 
TURBOs indicates that the portfolio has a moderate bias to small caps.  This positioning is consistent 
with UniSuper’s expectations.  From a style perspective, the analysis displays negative exposures to 
both value and growth (thus broadly style neutral).  However, the authors believe that the exposure to 
value is being partly understated and rather being indirectly reflected through an implied sectoral bias to 
financials.  Nothwithstanding this, the analysis confirms that the portfolio does not have any unintended 
style tilts.  Overall, the analysis suggests that the portfolio is constructed without significant aggregate 
factor exposures and is well diversified, in that the portfolio has captured the bulk of the ASX 300 beta.  
Pleasingly, there is a solid level of underlying ex-post alpha (i.e. alpha remaining after all beta factors 
are removed) of 1.6% p.a..   
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Asset Sub Class Style 1 Style 2 Style 3 Style 4 Style 5 Style 6 Total 

Manager Code Manager 

A 

Manager 

B 

Manager 

C 

Manager 

D 

Manager 

E 

Manager 

F 

Manager 

G 

Manager 

H 

Manager 

I 

Manager 

J 

Manager 

K 

Manager 

L 

Manager 

M 

Manager 

N 

Manager 

O 

Manager 

P 
Manager 

Q 

 

Weight 7.6% 6.6% 17.3% 6.1% 9.5% 5.3% 7.2% 7.0% 2.9% 6.3% 1.7% 1.3% 0.7% 6.1% 6.8% 7.5% 5.3% 100% 

Manager ex-Post Alpha p.a. 4.4% -2.5% -0.2% 1.6% -0.6% 1.6% 0.5% 1.0% -2.8% 0.5% 11.4% 5.6% -4.2% 3.9% 7.3% 4.6% 1.6% 1.6% 

ASX300 Accum. Index 94.3% 111.5% 99.8% 101.9% 103.2% 112.7% 94.0% 83.1% 108.9% 96.6% 85.6% 110.1% 124.6% 86.1% 82.7% 84.6% 112.7% 96.7% 

12-Month Momentum - - - - - - - - - - - - - - -4.8% - - -0.3% 

3-Month Momentum - - - - - - - - - - - - - - -9.6% - - -0.6% 

6-Month Momentum - - - - - - - - - - - - - -8.4% - - - -0.5% 

Consumer Discretionary 9.8% - - 8.9% - - - - 20.5% - - - - - - 17.5% - 3.2% 

Consumer Staples - - - - - - 11.6% - - - - - -37.1% - - - - 0.6% 

Energy - - - - - - - - - - - - - - - - - - 

Financials 46.9% - - 42.1% - - - - 69.1% - - - - - - - - 8.2% 

Health Care 12.6% 18.1% -5.2% - - -17.8% - - - - - - -24.7% 14.4% - - -17.8% 1.0% 

Industrials 11.6% -20.2% 0.0% 11.2% 12.5% - - - - - - 18.1% - - - - - 1.7% 

IT - - -2.2% - - - - - - - - - - - - - - -0.4% 

LPT - - 6.8% - - - - - - - - - - - - - - 1.2% 

Materials - - - 18.5% - - - - - - - - - - - - - 1.1% 

Telecommunication - - -2.3% - -5.0% - -6.5% - - - - - - - - - - -1.3% 

Utilities -7.4% - -5.6% 8.1% -6.2% - - - - - - - - - - - - -1.6% 

Value - - -6.4% 14.9% -43.6% -21.5% - -42.6% -49.4% - - - - 33.7% - 52.7% -21.5% -3.9% 

Growth - - - - - 53.8% - - - - - - - - - -52.9% 53.8% -1.1% 

ASX ex-150 - - - - - - - - - - 81.8% 47.0% 109.4% - - - - 2.8% 

ASX Small Ordinaries - - - - - - - 23.2% - - 78.3% 81.5% 115.2% - -9.0% - - 4.2% 

Model Adjusted R2 93.3% 88.4% 98.8% 93.8% 94.7% 90.2% 94.6% 89.3% 91.3% 87.6% 78.5% 88.5% 83.4% 94.3% 94.6% 85.2% 90.2% N/A 

Model Standard Deviation 0.8% 1.3% 0.3% 0.8% 0.8% 1.2% 0.7% 1.1% 1.2% 1.5% 1.7% 1.4% 2.1% 0.8% 0.7% 1.2% 1.2% N/A 

Residual Skew -1.2  -0.5  0.3  -0.2 0.6 0.1 -0.6 -0.1 0.2 -0.2 -0.3 -0.3 0.3 0.1 0.7 -0.4 0.1 N/A 

Residual Kurtosis-3 4.3  -0.1  0.8  0.6 1.2 0.3 1.9 -0.8 0.6 -1.0 0.2 0.4 0.5 -0.2 1.8 -0.3 0.3 N/A 

Residual DW Statistic-2 0.1  -0.1  0.1  0.1 -0.2 -0.2 -0.0 -0.2 0.6 0.2 -0.3 -0.4 -0.1 0.1 0.4 -0.1 -0.2 N/A 

Residual Autocorrelation -8.0% 0.8% -3.5% -5.4% 7.8% 8.2% -0.3% 6.6% -29.6% -23.9% 13.9% 19.9% 5.1% -13.4% -22.5% 6.1% 8.2% N/A 

 

Note: All indexes represent exposures after removal of the effects of all factors ranked higher in the list, as described in 4.2.
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Detailed below are illustrative comments of the regression results for one of the Fund’s Australian 
equity managers (viz. manager Q).  
 
Manager Q  

Manager Q adopts a quantitative investment process, which combines seven key factors.  The 
manager’s portfolio is structured to be broadly style neutral over the long-term, although biases to value 
or growth may be evident over shorter time periods subject to prevailing market conditions. The table 
below displays the key regression results for the manager. 
 
Table 2: Australian Equity Managers – Manager Q’s regression results 

Regression Factor Coefficients Standard Error t-Statistic p-Value Lower 95% Upper 95% 

Manager's ex-post Alpha 
(p.a.) 

1.6% 2.8% 0.57 57.19% -4.0% 7.1% 

ASX300A index 113% 5.0% 22.40 0.00% 103% 123% 

ASX Health Care Sector ^ -18% 6.3% 2.85 0.63% -30% -5% 

ASX Value Index ^ -21% 10.3% 2.08 4.19% -42% -1% 

ASX Growth Index ^ 54% 24.4% 2.21 3.17% 5% 103% 

Note: Factors marked ^ represent factor exposures after removal of the effects of all factors ranked higher in the list. 

Model Fit       

Model Adjusted R2 90.1%      

Model Standard Deviation 1.3%      

F-Significance 133.12 Significant at the 99.95% level   

Residual Analysis       

Residual Skew 0.1      

Residual Kurtosis-3 0.3      

Residual Auto-Correlation 8%      

 
TURBOs assessed that the manager’s returns could be described as generating an alpha return of 1.6% 
p.a. plus 113% of the ASX 300 Accumulation Index, with a negative Health Care exposure, and a solid 
growth bias.  All factors, other than the manager’s ex-post alpha are highly significant.  The overall 
model fit is good, with a 90.1% adjusted R2 and an extremely high F-statistic.  In addition, the residuals 
approximate a normal distribution with almost no evidence of skewness or kurtosis and only moderate 
auto-correlation.   
 
The large exposure to the ASX 300 Accumulation Index is somewhat higher than expected, given that 
the manager has constructed their portfolio to be broadly beta neutral.  The negative exposure to the 
Health Care sector is considered largely a period specific outcome and not an inherent bias in the 
manager’s investment process, and may also be the contra position to the higher ASX 300 beta (i.e. 
TURBOs is viewing the manager as higher market beta, but below market exposure to Health Care, 
which is a high beta sector).  
 
TURBOs also displays the results of the fit graphically, as shown in the following charts.  The residuals 
of the regression fits for each manager is carefully analysed by UniSuper, as these provide insight as to 
the higher moments of each manager’s alpha distribution. 
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Chart 2:  Contrasting manager Q’s observed returns with the best fit obtained 

 
 
The chart above contrasts the modelled factors (given by the thin black line) against the manager’s 
actual returns (given by the red curve), demonstrating that a good fit was attained.   The next chart 
provides a scatter plot of the error terms (or residuals), which effectively represents the distribution of 
the manager’s alpha. 
 

Chart 3:  Scatter plot of error terms for Manager Q  

 

 
The scatter plot demonstrates that the residuals are distributed in a broadly random manner around a 
mean of zero.  Another manner of testing the goodness of fit, is to consider a histogram of residuals 
relative to a normal distribution, as well as a normal probability plot, as shown in the next chart.  
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Chart 4: Manager Q’s residual distribution 

  

The above histogram of residuals and normal probability plot are reasonably closely aligned to a normal 
distribution (given by the red line and the 450 line for the normal probability plot). 

3.3 Expected vs. Actual Beta Exposure by Accumulation Option 

Once TURBOs completes the analysis presented in 3.1 for each manager and investment (some of the 
private equity, infrastructure and direct property manager return series are grouped together due to the 
high incidence of stale prices), TURBOs assesses the extent to which each Beta factor is correlated to 
the Fund’s benchmarks.  The same multiple regression techniques are used to map each factor to the 
Fund’s benchmarks, as was used to review each of the Fund’s managers.  By aggregating the results for 
each Accumulation Option one can contrast the Option’s derived beta exposure to that expected from 
each Option’s SAA, as shown in the table below: 

Table 3: Expected vs. Actual Beta Exposure For Each Option 

Beta Attribution High Growth (%) Growth Option (%) Balanced Option (%) Cons. Balanced (%) Capital Stable (%) 

 

SAA Fitted 

Beta 

Factors 

SAA Fitted 

Beta 

Factors 

SAA Fitted 

Beta 

Factors 

SAA Fitted 

Beta 

Factors 

SAA Fitted 

Beta 

Factors 

Australian Listed and 
Private equity 

41.8 38.4 33.7 31.3 28.3 26.6 21.0 20.5 11.0 11.0 

International Listed and 
Private Equity 

37.7 35.4 33.8 32.5 27.3 26.9 19.0 20.0 9.0 9.5 

Domestic and 
International Bonds 

0.0 4.2 7.5 10.6 25.0 26.8 40.0 39.8 50.0 50.0 

Direct Property  7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 

Index Linked Bonds 0.0 -2.9 7.5 5.5 5.0 3.4 5.0 4.4 7.5 6.7 

Infrastructure  10.5 10.5 7.5 7.5 4.5 4.5 0.0 0.0 0.0 0.0 

Listed Property Trusts 3.0 3.5 3.0 3.3 3.0 3.1 3.0 2.9 3.0 2.8 

Cash 0.0 -1.7 0.0 3.9 0.0 3.9 5.0 8.7 12.5 16.9 

Extraneous risk premia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 100.0 94.5 100.0 101.7 100.0 102.2 100.0 103.4 100.0 103.9 

 
The above table assesses the extent to which each Option’s beta exposure differs to the Fund’s SAA 
Benchmarks.  For example, the Balanced Option has a slightly lower equity and index Linked Bond beta 
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than expected, which is offset by a higher than expected fixed interest and cash allocation.  Overall the 
observed beta exposure for each option is broadly in line with the option’s SAA. 

3.4 MARGINAL AND PROPORTIONAL CONTRIBUTION TO RISK 

Having assessed each manager’s ex-post excess returns, TURBOs computes the marginal and 
proportional contribution to total Option risk from each manager/investment.  For the Balanced Option 
(which represents UniSuper’s default option, and hence is the most popular option), the ex-post total 
Option volatility amounted to 8.6% p.a. over the three years to June 2008.  The total Option risk was 
below the SAA long-term assumptions for the Balanced Option (9.8%), primarily as equities exhibited 
unusually low volatility until mid-2007.  Clearly, the authors expect the Option’s 3-year rolling 
observed volatility to increase over the coming months.   
 
By considering the covariance matrix of each manager’s ex-post alpha returns, TURBOs is able to 
derive the Option’s tracking error, which amounted to 1.1% for the Balanced Option.  The tables below 
demonstrate how each asset class contributed to the observed Option risk and tracking error, for the 
Balanced Option. 

Table 4: Balanced Option -Proportional Contribution to Risk and Tracking Error  

Balanced Option Asset Class 

Asset Class 

Weight 

Proportional 

Contribution to 

Option Volatility 

Proportional 

Contribution to 

Tracking Error 

 (%) (%) (%) 

Australian Equities  27.5 45.1 21.6 

Enhanced Passive 4.8 2.7 0.6 

Growth 3.9 5.9 5.5 

Long/Short 1.5 3.0 1.2 

Neutral 10.8 16.1 5.7 

Small Caps 1.0 8.5 5.5 

Value 5.6 8.8 3.2 

International Equities  25.0 34.7 32.6 

Direct Property  7.0 -0.1 5.0 

Listed Property  3.0 15.8 -0.6 

Infrastructure  4.5 1.0 32.5 

Private Equity  3.0 3.5 7.8 

TOTAL GROWTH ASSETS 70.0 100.0 99.0 

Domestic Fixed Interest  17.5 -0.1 0.4 

International Fixed Interest  7.5 0.1 1.0 

Domestic Indexed Bonds  5.0 0.0 -0.3 

Cash 0.0 0.0 0.0 

TOTAL DEFENSIVE ASSETS 30.0 0.0 1.0 

Option Volatility & Tracking Error  8.64 1.11 

 
The above tables demonstrate that most of each Option’s total volatility stems from the listed equity 
portfolios.  Not surprisingly, direct property and defensive assets reduced the Option’s risk.   
 
When considering tracking error, the authors note that the alternative assets (in particular infrastructure 
assets) generate most of the option’s tracking error – however this result partly arises as UniSuper is still 
in the process of obtaining appropriate risk factors for these asset classes.  This shortcoming generates an 
overly low beta, and high alpha contribution to returns, with an excessive tracking error for alternative 
assets.  
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In addition to the asset class contribution to total risk, TURBOs computes the marginal and proportion 
risk from each manager.  The table below summarises the top 20 managers’ contribution to total risk 
and tracking error for the Balanced Option. 
 

Table 5: Balanced Option – Top 20 Contributors to total risk 
Rank Asset Sub Class Manager Option's Weight in 

Manager 

Marginal 

Contribution to Risk 

Proportional 

Contribution to Risk 

   (%) (%) (%) 

1 Listed Properties LPT Manager A 1.4 2.8 8.9 

2 Listed Properties LPT Manager B 1.6 2.1 6.6 

3 Asia Ex-Japan IEQ Manager A 0.7 1.1 3.6 

4 Asia Ex-Japan IEQ Manager B 0.6 1.1 3.6 

5 Australian Equities AEQ Manager D 2.0 1.0 3.3 

6 Australian Equities AEQ Manager A 2.5 1.0 3.3 

7 Value IEQ Manager C 1.9 1.0 3.3 

8 Australian Equities AEQ Manager I 0.9 1.0 3.2 

9 Australian Equities AEQ Manager L 0.4 1.0 3.2 

10 Australian Equities AEQ Manager J 2.1 1.0 3.2 

11 Australian Equities AEQ Manager P 2.5 1.0 3.1 

12 Australian Equities AEQ Manager N 2.0 0.9 3.1 

13 Australian Equities AEQ Manager Q 1.7 0.9 3.0 

14 Australian Equities AEQ Manager K 0.2 0.9 2.9 

15 Emerging Market IEQ Manager D 1.8 0.9 2.9 

16 Growth IEQ Manager E 1.8 0.9 2.8 

17 Growth IEQ Manager F 1.8 0.9 2.8 

18 Australian Equities AEQ Manager C 5.6 0.9 2.7 

19 Australian Equities AEQ Manager G 2.3 0.8 2.7 

20 Australian Equities AEQ Manager B 2.1 0.8 2.7 

 Total  36.0 22.0 70.7 

 
Although the twenty managers tabulated above account for 36% of the Balanced Option’s assets, they 
account for 71% of the Option’s total risk.  As expected, the top 20 managers/investments reside within 
the listed equity asset classes.  Overall, the authors conclude the Balanced Option is well diversified – 
with the possible exception of the listed property mandates, which account for 15.5% of the Option’s 
total risk, but only 3% of the assets.  The recent extreme volatility exhibited by the listed property 
sector has affected the contribution to Option risk from the Listed Property Trust (LPT) managers. 
 
One possible finding is that an additional manager (possibly with a low tracking error mandate) could 
be introduced to the LPT manager line-up to help reduce the asset class’s risk. 

The next step in the Fund’s risk budgeting analysis is to consider the marginal contribution to tracking 
error.  The top 20 contributors are presented on the table overleaf. 
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Table 6: Balanced Option – Top 20 Contributors to tracking error 

Rank Asset Sub Class Manager Option's Weight in 

Manager 

Marginal 

Contribution to 

Risk 

Proportional 

Contribution to 

Risk 

   (%) (%) (%) 

1 Infrastructure Diversified 0.7 0.064 12.9 

2 Infrastructure Airports 3.0 0.053 10.6 

3 Private Equity Buy Outs 0.5 0.033 6.7 

4 Infrastructure Utility 2.3 0.033 6.6 

5 Value IEQ Manager A 1.9 0.027 5.4 

6 Long/Short IEQ Manager B 1.8 0.023 4.6 

7 Direct Direct Property 7.0 0.022 4.4 

8 Australian Equity AEQ Manager K 0.5 0.021 4.3 

9 Value IEQ Manager C 1.8 0.021 4.3 

10 Long/Short IEQ Manager D 2.0 0.019 3.9 

11 Enhanced Passive IEQ Manager E 6.8 0.019 3.9 

12 Infrastructure Roads 1.5 0.019 3.9 

13 Growth IEQ Manager F 1.8 0.018 3.6 

14 Enhanced Passive IEQ Manager G 6.9 0.017 3.3 

15 Private Equity Venture Capital 0.1 0.015 3.1 

16 Asia Ex-Japan IEQ Manager H 0.7 0.015 3.0 

17 Australian Equity AEQ Manager A 2.5 0.014 2.8 

18 Australian Equity AEQ Manager B 2.1 0.012 2.4 

19 Growth IEQ Manager I 1.8 0.011 2.2 

20 Australian Equity AEQ Manager D 2.0 0.010 2.0 

 Total  47.8 0.46 93.9 

 
Tracking error is computed by considering the standard deviation of each manager’s excess returns.  
When considering tracking error, care is required in the interpretation of the results for the alternative 
asset classes, due to the stale, smoothed and serially correlated nature of their return stream.  
Nonetheless, the above table demonstrates that the bulk of the Balanced Option’s tracking error results 
from alternative assets.  These findings were expected, UniSuper selects alternative assets based on 
their risk-return characteristics, and these assets offer favourable risk adjusted returns. 

3.5 DERIVATION OF EACH OPTION’S EX-ANTE ALPHA 

The next step in the risk budgeting process that TURBOs computes, is the estimate of each manager’s 
ex-ante (or forecast) alpha.  The authors utilised an adaptation of the Black-Litterman Model (BLM) to 
derive the estimates presented in the table overleaf: 
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Table 7: ex-Ante Alpha Forecasts for the Balanced Option 

Asset sub-

class 

Manager Balanced 

Option 

Manager 

Weights 

Observed ex-

Post Alpha 

Tracking 

Error 

UniSuper’s View 

of Each 

Manager’s ex-

Ante Alpha 

Confidence 

(That Alpha 

Lies Within 

1% of View) 

TURBOs ex-

Ante Alpha 

  (%) (%) (%) (%) (%) (%) 

Australian Equities * 27.5 0.2 1.4 1.4 1.3 

 AEQ Manager A 2.1 -0.8 4.3 1.3 70 1.3 

 AEQ Manager B 1.8 3.2 4.7 1.2 80 1.3 

 AEQ Manager C 4.8 1.0 1.5 1.1 85 1.0 

 AEQ Manager D 1.7 -2.6 3.9 1.2 65 1.2 

 AEQ Manager E 2.6 3.1 4.5 1.8 75 1.9 

 AEQ Manager G 2.0 0.8 2.5 0.9 75 0.9 

 AEQ Manager H 1.9 3.2 5.2 1.8 60 1.8 

 AEQ Manager I 0.8 0.0 5.3 0.7 55 0.5 

 AEQ Manager J 1.7 2.6 5.3 1.5 60 1.5 

 AEQ Manager K 0.5 2.4 8.9 2.6 60 2.4 

 AEQ Manager L 0.4 1.3 7.9 2.2 70 1.6 

 AEQ Manager M 0.2 -6.0 12.8 2.4 55 2.1 

 AEQ Manager N 1.7 -3.3 4.4 1.1 55 0.9 

 AEQ Manager O 1.9 -1.0 3.8 0.9 85 0.9 

 AEQ Manager P 2.1 -7.3 6.8 1.1 70 1.1 

 AEQ Manager Q 1.5 1.7 5.8 2.5 65 2.5 

International Equities 25.0 -2.8 3.2 1.5 1.5 

Direct Property 7.0 4.4 3.1 0.0 0.0 

Listed Property 3.0 -7.3 6.2 0.2 0.1 

Infrastructure  4.5 9.7 13.9 0.0 0.0 

Private Equity  3.0 3.2 5.7 0.0 0.2 

Domestic Fixed interest 17.5 -0.7 0.1 0.2 0.3 

International Fixed Interest (Hedged) 7.5 -0.1 0.9 0.8 0.7 

Index Linked Bonds 5.0 -3.4 0.6 0.0 0.0 

Total/ Weighted Average 100.0 -0.3 1.1 0.9 0.9 

* There was insufficient historic return data for Australian Equity Manager F, for this analysis as at the 

date of the investigation.  In addition, the TURBOs ex-ante alphas generated are sensitive to the value 

of tau.  

 
The above table combines the investor’s view with the each manager’s ex-post alpha to assess the ex-

ante alpha for that manager.  TURBOs calculates the expected ex-ante alpha for each manager, weights 
the results and generates an overall ex-ante alpha estimate of 0.9% for the Balanced Option.  Similar 
calculations were performed for the High Growth Option (ex ante alpha estimate amounts to 1.0%); 
Growth Option (0.9%); Conservative Balanced Option (0.7%); and the Capital Stable Option (0.5%); 

3.6  ASSESSING WHETHER ACTIVE MANAGEMENT IS EXPECTED TO ADD VALUE 

Having derived an Option level ex-ante alpha estimate, TURBOs is then able to assess whether each 
Option is expected to generate sufficient alpha, to justify a departure from a passive replication of the 
Fund’s SAA Benchmarks.  Hurdles for each option are derived in section 7 of Appendix 1.  In essence, 
the ratio of the Option’s ex-ante alpha divided by the increase in volatility relative to the benchmark 
must exceed the derivate of the Fund’s constrained efficient frontier, to justify the use of active 
management.   
 
The derivative of the Fund’s constrained efficient frontier, using the Fund’s normative long-term 
assumptions at the Balanced Option’s volatility level amounts to 0.28.  If the Fund had invested 
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passively and precisely matched its benchmarks, then the Option would have generated a volatility of 
7.1%.  TURBOs estimated that the Option’s total volatility amounted to 8.6%.  Hence, to justify an 
active program the ex-ante alpha divided by the increase in volatility (of 1.6%) must exceed 0.4% for 
the Balanced Option.  The results for all non-SRI diversified options are presented in the table below:  

Table 8: Required ex-Ante alpha to Justify a Departure From the Balanced Option's SAA 

Option High 

Growth 

Growth Balanced Cons. 

Balanced 

Capital 

Stable 

Derivative of the constrained efficient frontier  0.14 0.26 0.28 0.34 0.45 

Actual volatility had the fund tracked benchmark 10.4% 8.7% 7.1% 5.0% 2.8% 

Observed total volatility 11.7% 10.2% 8.6% 6.8% 4.1% 

Observed increase in risk, as a result of active 
management and strategic tilting  1.4% 1.5% 1.6% 1.8% 1.3% 

Minimum required ex-ante alpha (net of fees) 0.2% 0.4% 0.4% 0.6% 0.6% 

 
Hence to justify the use of deviating from a passive investment philosophy, the Fund has to exceed a 
minimum excess return of 0.2% for the High Growth Option, 0.4% for the Growth Option, 0.4% for the 
Balanced Option, 0.6% for the Conservative Balanced Option and 0.6% for the Capital Stable Option. 
 
By combining the findings from Table 1 (the expected vs. observed beta from each option) with table 5 
(the ex-ante alpha forecasts for each manager) and table 6 (the minimum alpha hurdle for each 
manager), the investor is able to assess the extent to which each option’s benchmarks are expected to be 
met, and whether the Fund expects to exceed the minimum hurdle required to justify active 
management.  The results of this analysis are provided in the table overleaf. 
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Table 9: Risk Budgeting and Factor Analysis – Summary Findings 

Return Attribution High Growth Growth Option Balanced Option Conservative Balanced Capital Stable 

  SAA Observed Beta 

Factors 

SAA Observed Beta 

Factors 

SAA Observed Beta 

Factors 

SAA Observed Beta 

Factors 

SAA Observed Beta 

Factors 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Australian Listed and Private equity 41.8 38.4 33.7 31.3 28.3 26.6 21.0 20.5 11.0 11.0 

International Listed and Private Equity 37.7 35.4 33.8 32.5 27.3 26.9 19.0 20.0 9.0 9.5 

Domestic and International Bonds 0.0 4.2 7.5 10.6 25.0 26.8 40.0 39.8 50.0 50.0 

Direct Property  7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 

Indexed Linked Bonds 0.0 -2.9 7.5 5.5 5.0 3.4 5.0 4.4 7.5 6.7 

Infrastructure  10.5 10.5 7.5 7.5 4.5 4.5 0.0 0.0 0.0 0.0 

Listed Property Trusts 3.0 3.5 3.0 3.3 3.0 3.1 3.0 2.9 3.0 2.8 

Cash 0.0 -1.7 0.0 3.9 0.0 3.9 5.0 8.7 12.5 16.9 

Extraneous risk premia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 100.0 94.5 100.0 101.7 100.0 102.2 100.0 103.4 100.0 103.9 

Expected return from Beta sources 8.3 7.9 7.8 7.7 7.3 7.3 6.6 6.7 5.8 6.0 

Impact of rebalancing 0.9 0.8 0.7 0.7 0.5 0.5 0.3 0.3 0.1 0.1 

Ex-Ante alpha   1.0   0.9   0.9   0.7   0.5 

Total expected return 9.2 9.7 8.4 9.3 7.7 8.6 6.9 7.8 5.9 6.6 

 

Expected excess return 

 

   

0.55 

   

0.88 

   

0.88 

   

0.90 

   

0.67 

Minimum hurdle to justify active management   0.19   0.38   0.44   0.61   0.57 

Notes: ^ The observed beta factors for direct property and infrastructure have been set to the benchmark, and the asset classes ex-ante forecast has been set to zero. 

 
The above table demonstrates that the Fund’s current manager line-up for each of the non-SRI diversified options generates a beta exposure that is broadly in 
line with the option’s SAA, and that each option’s ex-ante alpha exceeds the minimum hurdle required to justify active management. 
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3.7 REVERSE OPTIMISATION 

The final calculation performed by TURBOs is an assessment of an optimal manager line-up (optimal in 
the sense of generating the greatest likelihood of beating the required alpha).  This is a theoretical 
construct and considerable care is required in interpreting the results.  The table below summarises the 
optimised portfolio generated from TURBOs for the Balanced Option: 

Table 10: Reverse Optimisation - Balance Option 

Current Manager Line-up Results of Reverse-Optimisation Asset sub-class Manager 

Manager 

Weights 

Tracking 

error 
ex-Ante 
alpha 

Revised 

Weight 

Tracking 

Error  
ex-Ante 
Alpha 

  (%) (%) (%) (%) (%) (%) 

Australian Equities *  27.5 1.4 1.3 27.5 0.9 1.2 

 Manager A 2.1 4.3 1.3 0.0   

 Manager B 1.8 4.7 1.3 0.2   

 Manager C 4.8 1.5 1.0 16.2   

 Manager D 1.7 3.9 1.2 2.8   

 Manager E 2.6 4.5 1.9 0.3   

 Manager G 2.0 2.5 0.9 1.0   

 Manager H 1.9 5.2 1.8 1.0   

 Manager I 0.8 5.3 0.5 0.0   

 Manager J 1.7 5.3 1.5 1.7   

 Manager K 0.5 8.9 2.4 2.0   

 Manager L 0.4 7.9 1.6 0.0   

 Manager M 0.2 12.8 2.1 0.0   

 Manager N 1.7 4.4 0.9 2.3   

 Manager O 1.9 3.8 0.9 0.0   

 Manager P 2.1 6.8 1.1 0.0   

 Manager Q 1.5 5.8 2.5 0.0   

International Equities  25.0 3.2 1.5 25.0 3.8 1.8 

Direct Property  7.0 4.4 0.0 7.0 4.4 0.0 

Listed Property  3.0 6.2 0.2 3.0 6.6 0.2 

Infrastructure    4.5 13.9 0.0 4.5 13.9 0.0 

Private Equity   3.0 5.7 0.0 3.0 5.5 0.2 

Domestic Fixed interest   17.5 0.1 0.2 17.5 0.0 0.3 

International Fixed Interest   7.5 0.9 0.8 7.5 1.3 0.9 

Index Linked Bonds   5.0 0.6 0.0 5.0 0.6 0.0 

Total/ Weighted Average  100.0 1.14 0.85 100.0 1.22 0.91 

Information Ratio    0.749   0.750 

* There was insufficient historic return data for Australian Equity Manager F, for this analysis as at 

the date of the investigation. 

 
As can be seen in the above table, TURBOs recommends that greater emphasis be placed on high 
information ratio managers (e.g. enhanced passive mandates).  By utilising the recommended manager 
weights, the Balanced Option is expected to obtain a slightly higher information ratio.  However, the 
change in information ratio is slight, suggesting that the Option’s current manager line-up has been 
well considered. 
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4 PRACTICAL CONSIDERATIONS 

4.1 Calibrating the BLM 
 

The BLM has been discussed in a variety of sources (see for example Black & Litterman (1992), He & 
Litterman (2002), Litterman (2003a), Walters (2008) and Meucci (2008)). The BLM is discussed and 
adapted to consider active risk in section A1.4.2.  Whilst the development of the model and the 
investors’ views is reasonably straightforward, care is required in the calibration of tau as well as the 
formulation of omega matrix. 

4.1.1 Calibrating tau 

Walters (2008) explains that it is common for users of the BLM to be confused as to the appropriate 
value for tau.  He and Litterman (2002) use a value of 0.025, whereas Satchell and Scowcroft remark 
that many people use a value of τ  close to 1.  Several other authors (eg. Meucci 2008) completely 

eliminate τ . 

 
Personal discussions with the author of the BLM (Litterman, 2008) suggest that τ should be such that 

the standard deviations are of a similar scale to that of Π .  Litterman recommends a value around 0.3 
when one is considering total returns.  The output from the BL model is not overly sensitive to the 
selected value of τ .  Our view is that a higher value of τ (viz. in the 0.7-0.9 range) generates a more 
stable and interpretable ex-ante alpha estimate for the ex-ante alpha estimates. 
 

4.1.2 Calculating Omega  

The Omega matrix represents one’s confidence in each manager or stock’s ability to generate alpha.  
Specifically, Omega represents the variance of the view matrix Q. 

Walters (2008) provides a range of methods that can be used to derive the omega matrix.  The two 
methods that most appealed to us were the use of confidence intervals and using the variance of the 
residuals from the factor models.  We selected the confidence interval approach.  We did this by 
defining a confidence interval that each manager or stock would outperform their benchmark within a 
1% range.  Walters (2008) provides the following example of the method we use: “Asset 2 has an 

estimated 3% mean return with the expectation that it is 67% likely to be within the interval 

(2.5%,3.5%).  Knowing that 67% of the normal distribution falls within 1 standard deviation of the 

mean, allows us to translate this into a variance of (0.005)
2”. We compute the associated variance of 

each manager’s outperformance, and these values form the diagonal of the Omega matrix. 

4.2 Handling collinearity of risk factors 

Given the high levels of collinearity between factors (for example the return for large cap Australian 
stock index (ASX 100) is highly correlated with the return for ASX 300 stocks), we adopt a standard 
econometric technique of creating new factor return series, which equate to the residuals of the given 
factor, after regressing on all prior factors.  The structure is sequential and requires the selection of an 
ordering of the factors.  In most cases, we choose what we consider to be the primary market indicator 
as the first factor and then order the remaining factors to reflect the significance that we expect the 
factor returns to have in explaining the returns of managers/investments in each sector.  For example, 
for the Australian shares sector we chose the ASX300 as the primary factor and calculate, say, the 
residual returns of the Value index returns, after regressing on the ASX300 index returns.  Note that 
this provides both an estimate of the market beta of the Value index to the ASX300 market and of the 
average excess return of the Value return over the ASX300 for the estimation period (an “alpha” 
estimate) and the residual series which can be interpreted as the return series for value after adjust for 
its market component.  Lower order factors are regressed on the primary factor and each of the prior 
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residual returns series from the higher order regressions.  In the notation below, we write these 

residuals as 
*

,tkF , and for ease of expression we can write 
*

,1 tF = tF ,1  and refer to them as the residual 

factors. 
 
 Note that each resulting risk factor is simply the residual of the excess return of factor i after allowing 
for the exposure to the other (higher order) residual factors, and these residuals are orthogonal.  This 
approach also has the advantage of providing some insight into the nature of the markets for the period 
on which the estimates are based.   
 

4.3 Managing alternative assets  

Alternative assets are often valued with reference to a mathematical model, have stale and infrequently 
quoted prices and as such display a smoothed, serially correlated return stream.  Contrasting their 
returns to listed indices is of limited value.  To overcome these concerns, we contrast the returns from 
these asset classes to the rolling geometric average returns from listed markets over 2 years(2)i. 

4.4 Interpreting the derivative of the constrained efficient frontier 

The derivative of the constrained efficient frontier represents the hurdle that must be achieved to 
justify using active management, rather than altering the beta allocation for a given strategic asset 
allocation.  Three practical consequences arise from this simple observation: 

1. The greater the slope of the constrained efficient frontier, the greater the hurdle.  As such, it is 
more likely that the hurdle would be achieved for higher risk strategies (such as for a High 
Growth Option) than for a Cash Option or other conservative options (where the slope of the 
constrained efficient frontier is at its maximum).  For these more defensive strategies it may 
well be more appropriate to increase beta risk (e.g. by increasing duration or bonds or by 
introducing credit into portfolios) rather than to increase the use of active risk or port alpha 
from other sources.   

2. Strategies that reduce overall option risk, but with the cost of a slight reduction in return, are 
more appropriate within lower risk Options, with a higher slope of the constrained efficient 
frontier.  As an example, currency hedging of international growth assets generally reduces 
Option volatility, but at the cost of implementing the hedge.  It may thus be appropriate to 
maintain a higher currency hedge ratio for international growth assets within conservative 
Options than for an Option with a higher risk tolerance. 

3. The greater the number of constraints imposed by the investor, the flatter the slope of the 
constrained efficient frontier, and adopting active management is more easily justified.   
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4.5 Reverse optimisation  

The optimiser favours managers and stocks with lower tracking errors to benchmark and implied 
strong performance compared to risk.  However, the optimiser does not consider a range of other 
factors that are relevant to the structuring portfolio, including the capacity of the manager and the 
importance of diversifying manager risk.  Whilst the TURBOs optimised portfolio provides some 
insights into potential portfolio structure, it is only a tool and does not take into account a range of 
other (predominantly qualitative) portfolio construction considerations, including: 
 

• The type of manager (i.e. ‘developing’ or mature, boutique or institutional); 

• Capacity of the manager; 

• Desired style objective of the overall portfolio; 

• Manager-specific operational risks and the need to diversify manager exposure; 

• The overall bias to small caps (and the smaller end of the small caps market); and 

• Other qualitative considerations. 
 
TURBOs is particularly helpful in reviewing exposures across managers and in identifying and 
assessing the key sources of return for a manager, as opposed to being used to construct a final 
portfolio.  In this regard, optimisers tend to have difficulty producing meaningful portfolios, given the 
difficulty in incorporating a large number of variables (including qualitative components) and the 
tendency to concentrate allocations to managers with slightly better performance characteristics. 
 
 

5 CONCLUSIONS 

Risk budgeting is the process of setting a target level of risk to be accepted at the portfolio level, and 
allocating this risk across a number of investments in the most efficient manner in order to maximise 
returns whilst containing risk within the agreed targets.   
 
UniSuper has developed an in-house risk budgeting and factor analysis program that monitors the 
extent to which the Fund deviates from its Strategic Asset Allocation.  TURBOs provides the Fund 
with a formal framework for discussion and analysis.  The resulting analysis provides insights that help 
formulae the Fund’s investment arrangements. 
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Appendix 1 - Mathematical Formulation 
 

To aid the reader, a glossary of notation is provided in Appendix 2. 
 

A1.1  Background 
 

Let 
o

mW denote the Strategic Asset Allocation (SAA) weight for Option o within asset class m.   

Let ia

tiw , denote the weight (as a proportion of the total Fund) for manager i who operates in asset class 

ai at time t.  Hence 1,

1

=∑
Ν

=

ia

ti

i

w .  Where N denotes the total number of managers spanning all asset 

classes. 
 

Let iao

tiw
,

, denote manager i’s weight within Option o (manager i invests in asset class ai) at time t.   

 

Then 
o

m

a

ti

ao

ti Www ii

,

,

, = ...(1),   where m maps onto asset class ai for the weight 
o

mW .  

 

Let tw  denote the vector of weights of manager holdings at time t within Option o.   

Hence tw  = 



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Further: 1'tw = 1, where 1  denotes the unit vector










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

1

...

1

.  

 
For ease of notation vectors and matrices will exclude the time ( t ) and option ( o ) suffix in this 
appendix, although each matrix is assumed to be time and option dependent. 
 

If ia

ti,µ̂  denotes the ex-ante expected return from manager i at time t in asset class ai, while ia

ti,µ  

denotes the observed return from manager i at time t. Then µ̂  is a vector of ex-ante expected returns 

for each manager, at time, and µ̂ =

















M

tN

t

,

1

,1

ˆ

...

ˆ

µ

µ

…(1.2)  

 

Further, µ̂'w  equals the Fund’s expected return in a year’s time (on the basis that the manager 

weights remain constant over the timeframe considered). 
 

The value of µ̂ is derived in sections A1.2 and A1.4 below. 
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A1.2.   Estimating Each Manager’s Factor Exposures 
 
Each manager’s return can be considered as the sum of a beta (or market) factor exposure together 

with an active manager return (alpha).  The first step in estimating the value of ia

ti,µ̂ is to determine 

each manager’s factor exposure or beta exposures.  The more difficult step in the process is to estimate 
each manager’s prospective ex-ante alpha.  This is discussed in section 4. 
 

A1.2.1. Decomposing Manager Returns 
 
Sharpe (1964) derived the Capital Asset Pricing Model (CAPM), which states that a share’s expected 

performance at time t (given by ][ ,tsRE ) is dependent on the extent to which the share is correlated to 

the market (referred to as the share’s systemic risk or beta).  Specifically, Sharpe derived the CAPM 
formula: 
 

tstftMtfts RRERRE ,,,,,
~)][(ˆ][ εβ +−+=     …. (2.1.1) 

Where 
)ˆ(

ˆˆ ,

M

M

ts

RVar

σ
β = and  

M

ts ,σ̂ denotes the estimate covariance between the security (s) and an 

appropriate market index (M) at time t, while )ˆ( MRVar denotes the estimated variance of the market at 

time t and ts,
~ε  represents the error term. 

 
CAPM was extended by Ross (1976), in his formulation of Arbitrage Pricing Theory (APT).  APT 
states that the expected return of a financial asset can be modelled as a linear function of various 
macro-economic factors {Fk} or theoretical market indices, where sensitivity to changes in each factor 

is represented by a factor-specific beta coefficient ( tks ,,β ) for security s at time t. 

Hence under APT: ts

K

k

tktkstfts FRR ,

1

1

,,,,,
~ˆ εβ ++= ∑

−

=

  … (2.1.2) 

where ts,
~ε represents the error term with a non-zero average value.  K is the set of all applicable factors 

(the risk free rate is an element of that set) and tkF , denotes the observed return from factor k at time t.  

Rewriting equation 2.1.2 to ensure that the error term has a zero mean and setting the risk free rate as a 

factor, gives: ts

K

k

tktkststs FR ,

1

,,,,,
ˆˆ εβα ++= ∑

=

  … (2.1.3) 

Sharpe (2002) discusses the use of factor models to provide “robust predictions” in risk estimation 
procedures.  We can formally assess a factor model for managers as follows. 
 

Each manager holds a set of securities.  Let 
s

tiw ,
& denote manager i’s holding in security s at time t. Let 

S be the set of all securities. 

Then 1
1

, =∑
=

S

s

s

tiw&  

For some mandates, UniSuper allows shorting, as such the usual constraint Sssw
s

ti ..1,0, =∀≥& does 

not apply in the framework that follows.  We can express each manager’s expected return as: 

∑ ∑∑∑
= ===
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Where ia

ti ,µ represents manager i’s observed returns at time t. 
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Equation 2.4 can be expressed more simply as:  

ti

K

k

tktki

a

ti

a

ti Fii

,

1

,,,,,
ˆˆ εβαµ ++= ∑

=

…(2.1.5) 

Where ia

ti ,α̂ is the estimated weighted ex-post average of each stock’s idiosyncratic risk (weighted 

across all securities held by the manager), tki ,,β̂ is the manager’s weighted average exposure to factor k 

at time t and ti ,ε is the manager’s weighted error term, with a zero mean. 

 

Hence the manager’s ex-post return consists of an alpha component ( ia

ti ,α̂ ), a beta component 

(∑
=

K

k

tktki F
1

,,,β̂ ) and an error term ( ti ,ε ).  The beta component is estimated by solving for the set of 

{ }K

ktki 1,,
ˆ

=
β  for each manager, using multiple regression.  The formulas presented below were discussed 

in more detail in Straumann & Garidi (2007). 
 

Equation 2.1.5 can be written in vector-matrix notation: viz. εβµ += .X …(2.1.6) 
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Where r>k

*
 and r denotes the number of months data (both factor and manager data) that is analysed. 

r must be greater than k
*
 (the number of factors analysed).  Here tkF , denotes the observed returns 

from factor k at time t. 
 
Using multiple regression to solve equation (2.1.6), gives: 
 

( ) µβ ''ˆ 1
XXX

−
=  … (2.1.7) 

Equation 2.7 provides an unbiased estimate of the beta factors (noting that the first element in the β̂  

vector represents the ex-post alpha estimate for the manager).   
 

A1.2.2. Determining the goodness of fit 

 
The goodness of fit of the regression model given by equation 2.1.7, can be assessed using standard 
statistical techniques, e.g. by considering the vector of errors arising from the regression at time t, 
which is given by the vector:  

βµε ˆˆ X−=  … (2.2.1) 

The distribution of errors is carefully examined to ensure that the vector is approximately normally 
distributed and lacks autocorrelation.  TURBOS utilises three common statistical techniques to 
determine the goodness of fit: 

1. A table of statistical values is derived (standard statistical tests are used such as the variance, 
skewness, kurtosis and autocorrelation of residuals, the model’s F-statistic along with R2 and 
adjusted R2); 

2. A histogram of residuals relative to a normal distribution is charted; and 
3. A normal probability plot is derived.   
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Once a reasonable fit has been obtained, it is possible to explore the statistical significance of each of 
the beta factors that were found (as well as the ex-post alpha estimated from the manager) in order to 
determine the statistical significance of these factors.  The formulae that follow for the remainder of 
this section are presented for completeness and are well-known standard statistics of multiple 
regression modelling. 
 
The variance of the multiple regression model is given by:  

1

ˆ'ˆ
ˆ

*

2

,
−−

=
kr

ti

εε
σ  … (2.2.10) 

 
We can also derive the statistical significance and 100(1 − α)% confidence interval of each element 

within the β̂ vector using t-statistics.  In particular the 100(1 − α)% confidence interval for the ex-post 

alpha and each beta factor is computed as follows: 
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±= jti
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tji XXdiagt σββ α for j = 1..k*
  …(2.2.11b) 

Where
1

1)'( −XXdiag  denotes the first element in the diagonal of the inverse matrix XX ' , and 
1)'( −

jXXdiag denotes the jth element in the diagonal of the inverse matrix, for all j, j=1..K .  Further 

1,
2

* −−kr
tα obtained from the Student's t-distribution with r−k

*
−1 degrees of freedom. 

 
Finally, one can assess the statistical significance of each beta factor by considering the t-statistic from 

each beta factor (given as 
1

, )'(ˆ −
jti XXdiagσ ) and then deriving its p-score (taken from the inverse 

cumulative student’s t-distribution with r−k
*
−1 degrees of freedom).  The observed significance level 

(or p-score) is the smallest fixed level (usually 5%) at which the fitted beta factor is deemed to be 
statistically significant.   
 
The standard regression approach outlined in section A1.2 is based on the assumption that the factors 

( kF ) are uncorrelated and have equal and constant uncertainty (i.e. are homoscedastic).  In section 

A1.2.3 we derive a method to handle factors with unstable variances, and in sections 4.2 and A1.2.4 
we tackle the more complicated problem of correlation between factors, and the management of co-
integration. 
 

A1.2.3. Weighted Least Squares (WLS) estimation 

 
WLS regression compensates for violation of the homoscedasticity assumption by weighting factors 

(i.e. kF ) differentially.  Under WLS, factors which contribute large variances on the regressed 

manager’s returns count less in estimating the tki ,,β̂  coefficients.  The result is that the estimated 

coefficients are usually very close to what they would be in equation 2.1.7, but under WLS regression 
their standard errors are smaller.  Specifically, the weighted sum of squared residuals is minimised if 

each factor’s weight is equal to the reciprocal of the variance of the factor 
2

,
ˆ

tiσ .  If Φ denotes a square 

matrix of error estimates for each factor, i.e.  
 

Φ = diag(
2

,

2

,2

2

,1 *ˆ,...,ˆ,ˆ
tktt σσσ )  … (2.3.1) 
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Then equation 2.1.7 can be rewritten as: 
 

( ) µβ 111 ˆ'ˆ'ˆ −−− ΦΦ= XXX  … (2.3.2) 

 

And the variance of the estimates amounts to ( ) 11ˆ'
−−Φ XX …(2.3.3) 

 
Hence, to generate a WLS estimate of the factor exposures, we run the standard multiple regression 
model provided in section A1.2.  To overcome the concerns associated with the lack of 
homoscedasticity, we re-run the regression formulation, but using a weighted least squares approach 
outlined in equation 2.3.2.  The formulas presented in this section are standard statistical techniques. 
 

A1.2.4. Adjusting the regression solution to overcome collinearity 
 
Collinearity is a statistical concern that arises when two or more factors in a multiple regression model 
are highly correlated.  In this situation, the beta estimates of each manager’s returns to the factors 
(given in equation 2.2.11b above) and the significance tests for the factors (given by their p-scores), 
are underestimated.  Further beta estimates change erratically in response to small changes in the data, 
and the estimates of the ex-post alpha become unreliable.  Unfortunately, within the finance 
environment many factors are highly correlated (as an example, monthly returns from the ASX300 
Accumulation index was 98% correlated to the ASX listed property index between 2001 and 2007).  
 
To overcome this concern, two alternative approaches to regression analysis were explored and 
rejected, before we derived an algorithm that is stable and computationally efficient.  The first attempt 
was to utilise principal component analysis (PCA).  PCA is a technique used to reduce 
multidimensional datasets to lower dimensions for analysis, and has the benefit that the new set of 
factors are orthogonal (hence overcoming the dangers of collinearity).  Unfortunately, the generated 
factors lacked intuitive interpretation and were unstable.  The next approach that we explored involved 
building up the regression model by adding factors until the model became unstable.  Hence one 
would first run the regression with each individual factor and then select the factor with the lowest p-

value (i.e. the most significant factor) and systematically add factors to the model.  Unfortunately this 
approach frequently converged to a single factor, with low overall model significance (viz. The 
adjusted R2 values and F-tests weren’t ideal). 
 
We finally derived the following algorithm to overcome collinearity: 
 
1. Generate a multiple regression analysis with all the factors applicable to the asset class; 

2. Save the adjusted R2 of the regression analysis; 

3. Find the factor with the highest p-value (i.e. the factor that is least statistically significant); 

4. Remove this factor from the set of analysed regression factors; 

5. Re-run the regression with all the remaining factors; and 

6. Continue the loop (K-1) times, until only a single factor remains. 
 
Once all (K-1) runs were complete, the TURBOS program scans all the available adjusted R2 variables 
to find the highest value.  The set of factors that are associated with the optimal adjusted R2 were then 
re-run, this time removing any factor whose p-value was below the user-defined statistically 
significant value (usually set at 5%).  The end result is that the TURBOS program is able to converge 
on a set of k

* significant factors that (although correlated) generate stable and intuitive factor 
exposures for the manager.   



UniSuper’s Approach to Risk Budgeting                                                 29 

A1.3.   Estimating the marginal contribution to risk from each manager 
 

Let V denote the covariance matrix for the N managers (at time t). 

Hence 
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Where  tij ,σ̂ denotes the estimated covariance between manager i and manager j at time t.  

If ia

tir ,  represents manager i’s total observed return in month t, (t=l,l-1,..,l-m+1) and l is the latest 

observed time period, then the covariance between manager i and j at time t, is estimated by: 
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Note that tij ,σ̂ assumes that a manager’s return series is free of auto-correlation.  If ia

ti ,ρ̂  represents the 

estimated auto-correlation factor for manager i at time t, then ia

ti ,ρ̂ can be roughly estimated, using a 

one-month lag, as follows: 
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And tij ,σ̂ must be adjusted for autocorrelation by dividing the observed covariance between manager i 

and manager j by the factor ( )( )ii a

tj

a

ti ,,
ˆ1ˆ1 ρρ −− .  Note that if no evidence of auto-correlation exists, then 

ia

ti ,ρ̂ =0 and no adjustment is required to the standard covariance formula.  The approach generates a 

practical and conservative adjustment to the covariance matrix, but may well overstate the covariance 
of returns for listed equity managers who utilise momentum strategies. 
 
Hence covariance of returns is estimated as: 
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Further, each Option’s variance at time t (
to ,

2σ̂ ) can be estimated from the ex-post data: 
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Where w  is defined in equation (1.1) above.  
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The marginal contribution to the total fund variance, for manager i is derived by taking the partial 

derivative of the total option variance ( wVw ' ) with respect to the weighting for manager i: 
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Equation 3.3 allows us to derive the marginal contribution to the total option risk (taken as the 

standard deviation of returns for Option o, or
to ,

σ̂ ) 
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Hence the marginal contribution to the total option risk from manager i at time t is the ratio of the 
covariance of returns between manager i and the option, divided by the standard deviation of returns 
of the option. 
 
Each manager’s proportional contribution to risk is simply their marginal contribution multiplied by 
their weight in the portfolio.  This is the approach outlined by Mina (2007). 
 

Hence proportional contribution to risk for Manager i = 
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tioao
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As a check, the sum of the proportional contribution to risk per manager, equals the option’s standard 

deviation of return: ∑ ∑∑
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Equations 3.6 and 3.7 were derived by Scherer (2000) and Ilricht (2004). 
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A1.4.   Determining Each Manager’s Ex-Ante Alpha 
 
We start by considering utility theory, which can be utilised to assess equilibrium expected returns, 
and then re-written to find the optimal portfolio given a covariance matrix and a vector of expected 
returns.   
 
Such an approach introduces the need for a Bayesian framework to determine ex-ante returns.  After 
reviewing commonly used methods to find ex-ante return estimates, we selected the Black-Litterman 
Model (BLM), which was adapted to consider alpha, rather than total return expectations.  The 
approach used is similar to that considered by Winkelman (Litterman, 2003b) except that we did not 
make the simplifying assumption that alpha is independent between managers.  The assumption that 
alpha is independent between managers occurs frequently within risk budgeting papers.  Whilst alpha 
and beta are independent (by design), alpha between similar manager styles is frequently correlated 
(e.g. when a single quantitative managers outperforms, frequently many quantitative managers also 
outperform, partly as similar methodologies are selected by managers).  As such, we felt it necessary 
to consider the possibility that managers’ alpha could be correlated. 
 
A Markowitz efficient portfolio is one that offers the greatest expected return for a given level of risk.  
To find the set of such portfolios, a computationally efficient approach is to maximise the Fund’s total 
return per unit of risk.  To do so we make use of utility theory and calculus.  Utility theory (outlined in 
a variety of papers e.g. Mina (2007)), generates a variety of key findings, depending on the shape of 
the investor’s utility function, but one key conclusion, states that the investment objective is to 
maximise expected return per unit of risk. 
 

Maximise: wVww '
2

'
λ

µ − … (4.1) 

Where λ denotes the investor’s risk aversion parameter.   
 
Taking the derivative of 4.1 with respect to the weight for manager i and setting this equation to zero, 
along with making use of equation 3.3 gives: 
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Hence the local maximum of 4.1 for manager i is derived when ∑
=

=
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Note that ∑
=

N

j

tij

a

tj

jw
1

,, σ̂λ represents the ith element of the vector wVλ .  If 
*

w denotes the vector of 

optimal manager weights, then the local maximum of 4.1 is derived when: 
 

*wVλµ = …(4.4) 

 
Pre-multiplying (4.4) by the inverse of the covariance matrix gives:  

µ
λ

1* 1 −= Vw …(4.5). 

 

A1.4.1.   Reverse optimisation 
 
One can use equation 4.4 to derive the expected return for an Option o, given the estimated risk 

aversion parameter for the Option (
oλ& ), the estimated variance-covariance matrix (V̂ ), and the 

current manager weights within the option portfolio, viz. wVo ˆˆ λµ &=  …(4.6). 
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Equations 4.5 and 4.6 have been presented in a variety of papers, e.g. Mina (2007). 
 
As the risk aversion parameter for each Accumulation Option cannot be accurately ascertained, 
equation 4.6 is only of benefit to determine the relative differences between expected returns for 
managers.  If one is able to derive the expected return for a single manager with a high degree of 
confidence, using prior knowledge, then the set of total expected returns can be determined.  An 
obvious candidate for the selection of the base manager is a cash manager where returns are generally 
stable and predictable. 
 
The above paragraph introduces a Bayesian consideration into the determination of ex-ante return 
forecasts.  In addition, equation 4.6 ignores the uncertainty of expected returns in equilibrium.   
 
To allow for the investor’s views as well as the need to deal with the uncertainty of equilibrium 
expected returns have been considered using the Black-Litterman Model (Litterman, 2003). 
 

A1.4.2.  The Black-Litterman Model (BLM) 
 
The BLM deals with the uncertainty of expected returns by adopting a Bayesian approach, where the 
investor’s views is subject to error and can be modified by the market’s initial equilibrium return 
expectation, to derive a blended return expectation. 
 

BL define eqw  as the equilibrium portfolio of all assets in the market (weighted by market 

capitalisation).  If there are N* assets in the universe of all assets, then eqw is a 1 x N* vector. 

The covariance matrix for all assets is defined as Σ (an N* x N* matrix). 
 
Under the BL Model, the implied equilibrium of returns (in excess of the risk free rate) is normally 

distributed with an expected return vector of Π: 
 

eqwE Σ=Π δ][ … (4.2.1) 

 
Equation 4.2.1 is derived in an analogous manner to equation 4.1 (i.e. by determining the maximum 

return per unit of risk).  In equation 4.2.1, δ represents the world-wide risk aversion parameter, and is 
usually set to the risk-regression slope of all asset classes.  The variance of the equilibrium return is 

given by Σ and in the BL model is scaled down by a factor τ which measures the uncertainty of the 

priori.   
 

Hence the market’s prior equilibrium distribution of returns ( Π ) is distributed Normally i.e.  
 

Π ~ ),( ΣΣ τδ eqwN   … (4.2.2) 

 
Having determined the prior distribution of equilibrium returns, the BL model then allows for the 
investor’s views.  If the investor has K views (clearly, K ≤ N*), which are independent of each other 
and of the market’s prior equilibrium, then the BL model determines the investor’s expected overall 

returns given their views and the confidence the investor has in their views.  Let Q  denote the matrix 

of investor’s views (a K x N* matrix).  Then Q can be expressed as the product of Ρ  (which is a K x 

N* matrix) and the prior equilibrium distribution of returns, Π .  Further if Ω denotes the investor’s 

confidence in their views, then Q is normally distributed with mean ΠΡ , and variance Ω . 

 

Specifically: Q ~ ),( ΩΠΡN  … (4.2.3) 
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We wish to find the Combined return distribution of returns, given the investor’s views.  The result is 
presented in equation 4.2.6 and was derived by Black and Litterman (see for example Litterman 
(2003a)).  The following page describes one method of deriving the BLM from first principles, based 
on work by Jiang et al (2005). 
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ε then the regression solution to ε+Π= XY (3) which 

minimises the error term ε would provide the optimal solution to equations 4.2.2 and 4.2.3 and would 
generate a weighted average of the equilibrium returns and the investor’s views (or, using Bayesian 

terminology, the posterior distribution of Π  given Q ).  The greater the investor’s confidence in 

Q (i.e. the lower the values in Ω ), the higher the weight of the combined views to the investor’s 

view. 
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the solution to: εβµ += .X  is provided by β̂ which has an unbiased expected value of 

( ) µ111 ˆ'ˆ' −−− ΦΦ XXX  and an estimated variance of ( ) 11ˆ'
−−Φ XX  (Refer equation 2.2.2 and 2.2.3, and 

note that Φ denotes a square matrix of error estimates for each factor).  
  
By substitution, we therefore have that the unbiased estimate of the combined view is: 

( ) YXXX 111 '' −−− ΘΘ , while the variance of the combined view is ( ) 11'
−−Θ XX . 

 
Hence, the unbiased estimate of the combined view 
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Starting with the solution to the variance, gives: 
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We can also solve for the unbiased estimate of the combined view: 
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= ( )[ ] ( )[ ]Q111
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Hence, the BLM generates a combined view that is Normally distributed with an expected value given 
in equation 4.2.5 and a variance given by equation 4.2.4. 
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Equation 4.2.6 has been presented in numerous papers, including Litterman (2003a), Walters (2008), 
Meucci (2008) etc. 
 
 

A1.4.3.   Adapting the BLM for active risk 
 

Equation 4.2.6 provides a framework for combining equilibrium returns ( eqwΣ=Π δ ) for N* assets, 

K investor specific views ( Ρ ), the weight the investor places on the equilibrium view 
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and the 

confidence the investor has in their views ( Ω ).  The BLM can be extended to consider active risk, as 
follows. 
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tiE α  Denotes the ex-ante expected alpha from manager i, at time t. 

α̂  Denotes the vector of expected alphas. 

Ψ̂  
Denotes the covariance matrix of each manager’s returns in excess of their factor exposures. 

AQ  Denotes the investor’s view of the expected alpha generated from each manager. 

AΩ  Denotes the confidence the investor has in each manager’s ability to generate alpha.  
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Where AΠ denotes the vector of equilibrium active returns.   

 

When considering total returns (i.e. in equation 4.2.6), Q is usually expressed for convenience as the 

product of Ρ  (which is a K x N* matrix) and the prior equilibrium distribution of returns, as the 
investor often has a view that a certain asset class will outperform another asset class, but has less 
confidence as to the absolute return generated by both asset classes.  However, one is not required to 

express Q  as a product of Ρ  and Π , and when considering active returns the investor tends to have 

a view as to the absolute level of alpha generated by each asset or manager.  Litterman (2003b) 
derived equation 4.2.7 and explains that the equation can be further simplified by considering that in 
equilibrium: 

a) Active returns for all assets equal zero (i.e. 0=ΠA ); and  

b) The investor’s views about expected alpha (given in AQ ) are formed independently to 

equilibrium returns ( AΠ ), hence AΡ is an identity matrix. 

Hence  α̂ = ( ) [ ]AAA Q
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Equation 4.2.8 is presented in Litterman (2003b) and is central to UniSuper’s risk-budgeting 
framework, as it relates expected active returns to UniSuper’s views about active returns, UniSuper’s 
confidence in those views and the covariance between historic active returns. 
 
Note that equation 4.2.7 is also of use, if historic alpha estimates replace the equilibrium alpha 

estimate for each manager.  Under this scenario, the investor’s views about expected alpha ( AQ ) are 

still formed independently to historic returns ( AΠ̂ ), and AΡ  remains an identity matrix.  If we let 

Α denote the vector of ex-post alpha estimates, then 
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where ia

ts,α is derived from each 

manager’s regression analysis provided in equation 2.4, then we can recast equation 4.2.7 as follows: 
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The results from equation 4.2.9 can be contrasted to that of 4.2.8 as it relates expected active returns to 
the investor’s views about each manager’s active returns, their confidence in those views, the 
covariance between historic active returns, the actual observed ex-post alpha and the confidence the 

investor places on those historic ex-post estimates, given by 








τ

1
.   

Effectively, equation 4.2.9 generates en ex-ante alpha that is a weighted average of historic ex-post 
alpha estimates combined with the investor’s views.  Whilst UniSuper uses equation 4.2.9 within 
TURBOs, equation 4.2.8 is an appropriate alternative.  
 

A1.5.  Return Attribution 
 
By combining and weighting the Fund’s exposure to all N managers we can derive the ex-ante 
expected return for Option (o) and attribute this return between a variety of sources.  In section A1.2 

we attributed the each manager’s total return ( ia

ti,µ ), to an alpha and beta component, viz. 

ti
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,,,,,
ˆˆ εβαµ ++= ∑
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Where tki ,,β̂ is the manager’s derived exposure to Factor k at time t and ti ,ε is the manager’s weighted 

error term, with a zero mean. 
 
Return attribution has been discussed by a variety of authors (including Mina (2007) and Litterman 
(2003b)).  We extend the analysis to consider how each of the manager’s regressed factors map onto 
the Fund’s SAA benchmarks. 
 

Within the set of available beta factors { }K

kkF
1=
there is a sub-set of M factors that equate to the Fund’s 

benchmark for each asset class (as an example, for the Australian Equity asset class, the current 
benchmark is the ASX 300 Accumulation index – which in turn is a potential beta factor).  Let 

{ }M

mmBM 1

*

= denote the set of strategic benchmark factors, for each of the Fund’s M asset classes. 

 
Then we can determine the manner in which each beta factor maps onto the Fund’s strategic 
benchmark factors as follows: 
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…(5.1) 

where kRP denotes the risk premium available from Factor k which cannot be attributed to one of the 

Fund’s benchmarks, km,γ̂ denotes the estimated sensitivity between factor k and the m
th asset class 

benchmark.  tk ,ν  denotes the residuals of the regression equation, with a zero mean.  The risk premia, 

and the km,γ̂  factors are solved in the same manner that was used to derive the factors from equation 

2.1.5 (viz. weighted least squares multiple regression, with the same optimisation algorithm to manage 
collinearity).    
 

From equation 2.1.5, we can express each manager’s returns as a function of ia

ti ,α , along with a set of 

factor exposures ∑
=

K

k

tktki F
1

,,,β̂ .  Equation 5.1 allows us to assess the link between each factor exposure 

to that of the Fund’s SAA benchmarks.   
 
By combining equations 2.1.5, 4.2.9 and 5.1, we can derive the expected return for each option 
expressed as a function of: 
 

e) The weighted average of each manager’s expected ex-ante alpha; 
f) The weighted average exposure to the Fund’s SAA benchmark; 
g) Extraneous beta risk premia from factors that differ to the Fund’s SAA benchmark; and 
h) An error term. 
 

Let 
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tR denote the historic (ex-post) return from Option o at time t. 
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Substituting equation 2.1.5 into 5.1 gives: 
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Substituting equation 5.1 into equation 5.3 gives: 
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The above equation is central to the Fund’s factor analysis.  In particular:  

• 
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, α̂ denotes the ex-post alpha expected from the fund’s managers for Option o.   
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ˆˆ βγ denotes the weighted average exposure to the Option’s 

SAA benchmark; 
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• While 
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, β̂ denotes the Option’s exposure to other known beta sources (such as 

credit risk, value and small cap biases, sector bets etc);  
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,
ˆ ενβ , represents the error or residuals of the various 

regression estimates (and has a zero mean).  The distribution is critically examined to ensure that it 
is sufficiently normally distributed.  Evidence of extreme kurtosis or skewness, could be cause for 
concern. 

 

Recall that in section 1 we defined 
o

mW as the time-independent Strategic Asset Allocation (SAA) 

weight for Option o within asset class m.  Hence if the Fund were to passively match its SAA, then the 

expected return for Option o, would amount to: ∑
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Where [ ]*

,tmBME denotes the expected return for the benchmark factor for asset class m at time t. 

 

Let 
o

tRA denote the Fund’s total actual risk allocation for Option o at time t.   Hence
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the deviation from the Fund’s SAA for Option o at time t. 
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Hence 
o

tRA  = {Active Management Risk} + {Factor Risk} + {Error Distribution Analysis} 

 
As such, each Option is exposed to three forms of tracking error or risk.  The first relates to active 
management risk, the second and most significant risk relates to the extent that the beta Factor 
exposures for the Option differs to the Option’s SAA, whilst the third risk relates to the existence of 
other extraneous beta factors within the portfolio. 
 
In addition to risk attribution, one can calculate the expected return for each Option.  By taking the 

expectation of equation 5.8, and noting that the expected error term is zero (i.e 0][ =εE ). 
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Where ]ˆ[ ,
ia

tiE α  denotes each manager’s expected ex-ante alpha (derived in section 5 of this appendix).   

 
TURBOS determines each Option’s ex-ante alpha value, and then tests whether the estimate exceeds 
the minimum required hurdle. 
 

For each Option, ][ o

tRE  is contrasted to the Option’s investment objectives, to ensure that the Fund 

remains confident that the objectives remain achievable with appropriate levels of confidence. 
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A1.6.  Risk Allocation 
 

If we let α̂ denote the vector of estimated ex-ante alpha’s for each manager, and Ψ̂ denote the 

estimated variance-covariance matrix of excess returns, then 

α̂  = 
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Where tij ,ψ̂ denotes the estimated covariance between manager i and manager j’s excess returns, or 

alpha streams.  Generally, one expects tij ,ψ̂ = 0 when i<>j.  However, importantly, we have not forced 

or assumed these cross-correlations to be zero and tii ,ψ̂ denotes manager i’s tracking error 

relative to the manager’s observed or fitted beta exposures.  ET denotes the vector of tracking errors 

for each manager at time t. i.e. [ ]tiittET ,,22,11
ˆ,...,ˆ,ˆ' ψψψ= . 

As a result, Ψ̂ can be rewritten as ETCET .'. ,  where C denotes the correlation matrix of excess 

returns, which need not equal the identity matrix. 
 
The optimal active risk allocation problem can be specified as maximising the Fund’s expected active 
return, subject to a specified risk budget.  Risk allocation typically focuses on setting a limit on the 
Fund’ tracking error.  Although this is not the approach adopted by TURBOs, it is useful to assess 
each Option’s risk allocation using the simpler statistic of a tracking error.   
 
We start with the traditional solution to risk budgeting namely to maximise expected excess returns 
subject to the constraint that the Fund’s tracking error remains within a specified limit.  Algebraically 

this problem can be specified as: Maximise: α̂'w , subject to the constraint that Option o’s active 

tracking error is less than a specified maximum (i.e. max
ˆ' TEww ≤Ψ ), where maxTE represents the 

pre-determined maximum permissible tracking error.  
 

From section 4.1 we know that the maximum of wVww '
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We now need to solve for λ such that the constraint is obtained.  Hence 

λ is such that: max
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=> λαα ≤ΨΨΨ −− ˆˆˆˆ'ˆ1 11

maxTE
…(6.3) 
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αα
λ
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*
w can now be solved by substituting λ  into equation 6.1.   
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As such, the portfolio with the maximum expected return (with the greatest permissible tracking error) 
is given by: 
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w α
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Equation 6.5 has been derived by Lee and Lam (2001), and is presented in Scherer (2004) as well as 
Berkelaar et al (2006).  Lee and Lam derived the formula using Lagrangian techniques, as opposed to 
the simpler method used here. 
 
Interpreting equation 6.5 

Equation 6.5 has intuitive appeal.  Note that 
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is a constant.  If the alpha streams from each 

manager is independent of every other manager, then Ψ̂ is a square matrix with a diagonal consisting 
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Hence the portfolio that maximises returns such that tracking error is limited to maxTE is proportional 

to the ratio of each manager’s expected out-performance to the estimated variance of their excess 
returns.  Equation 6.5 is an extension of most risk allocation models – except that correlations of 
excess returns between managers are not assumed to be zero. 
 

A1.7.  Incorporating the Fund’s Strategic Asset Allocation (SAA) 
 
Most risk budgeting frameworks are determined ignoring the Fund’s liabilities (and hence SAA), 
typically by budgeting tracking error.  UniSuper’s risk budgeting framework differs to that used by 
most practitioners as TURBOs monitors the extent to which each Option deviates from its Strategic 
Asset Allocation (SAA).   
 
UniSuper’s SAA for each option is set by applying a set of investment objectives along with 
investment constraints (such as removing the ability to short stocks, limiting exposure to alternative 
asset classes etc), and then assessing where on the constrained efficient frontier the Trustee would like 
the option to lie, by considering the balance between risk and reward. 
 
Asset Liability Models generally consider only beta risk from each asset class.  The thin dark blue 
curve in the chart below, demonstrates the Fund’s unconstrained frontier, while the thicker light blue 
curve represents the Fund’s constrained efficient frontier.  Overlaying the Fund’s investment 
objectives (possibly via the use of a utility function) allows the Fund to determine the optimal asset 
allocation for each option, as shown in the chart below for the Fund’s High Growth Option (4).   
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Comparison of The Accumulation Options' Risk and Return Profile

Relative to the Efficient Frontier - Risk Neutral Conditions
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The Fund has the ability to invest passively and precisely match the beta exposures expected from 
each asset class.  The extent to which the Fund employs active management represents a source of risk 
to the Fund.   
 
Consider the constrained efficient frontier, derived by investing passively (given by the thick blue 
curve above).  Instead of investing passively, the Fund can invest actively, which adds the potential to 
improve returns (or dampen returns if managers are poorly selected).  Additionally, such alpha sources 
can add risk to the portfolio, or possibly, reduce risk if the alpha source is uncorrelated to the beta 
returns.  Graphically the addition of alpha could be thought of as increasing the “thickness” of the 
efficient frontier.  
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From what we can tell, Baars et al (2006) were the first to represent active returns as a circle in mean-
variance space, we have extended their work to consider the impact of adding active risk to the 
efficient frontier.  Effectively the optimal risk-return balance that was derived to meet the liabilities 
has been altered with the incorporation of active risk.  To overcome this concern, the Fund could first 
remove beta risk (eg. by reducing the allocation to equities) and then add active risk, so as to re-
establish the optimal SAA, as shown in the chart below.   
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If the Fund were to reduce its beta risk, and add active management to get back to the optimal SAA, 
and the active managers were able to generate an appropriate level of excess returns, then the Fund 
would be neutral to the decision to use active managers.  This provides us with a key inequality that 
will be used in the risk budgeting formulation, namely that the option’s ex-ante alpha needs to exceed 
a minimum level to justify a departure from beta allocations. 
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Hence to justify a departure from the optimal (Beta constructed) portfolio, 

active management must be such that:
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Using the approach outlined in section 6 we can extend the risk allocation problem to correspond with 
each option’s strategic asset allocation.  Once again we wish to maximise expected excess returns 
subject to the constraint that the ex-ante expected excess returns divided by the impact of the active 
management program on the Option’s overall volatility is greater than the derivative of the efficient 
frontier at the Options’ risk level.   
 
Algebraically this problem can now be specified as:  

Maximise: α̂'w , subject to the constraint that: 
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Where 
2

oσ represents the variance of the option, based on the SAA long term assumptions and 

O

EFEF O
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δσ
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=
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represents the derivative of the constrained efficient frontier, with respect to 

the volatility of the frontier, solved when Oσσ = .   

 

Recall that in section A1.1 we defined iao
W

,
as the time-independent Strategic Asset Allocation (SAA) 

weight for Option o within asset class ai. Where oW denotes the vector of Strategic weights to each 

factor exposure for Option o.  In section A1.5 we defined [ ]tkFE , as the expected return for the Factor 

k at time t, while F denotes the vector of expected factor returns.  Finally if Ζ
v

denotes the covariance 

matrix of all benchmark factor returns (
*

,tmBM ) utilised within the Fund’s SAA, then 

ooO WW Ζ= 'σ  

As 
δσ

σδ )( OEF
and Oσ  do not vary over time (unless the fund’s SAA changes or the assumptions the 

Fund’s long term assumptions are revised) both parameters are effectively constants, which vary for 
each Option. 
 

Note that 
δσ

σδ )( OEF
 can be solved numerically using the formula: 
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While Oσ is derived from the Fund’s SAA formulation.  The values for 
δσ

σδ )( OEF
and Oσ are shown 

in the table below, for each option based on UniSuper’s latest SAA review: 
 

Constrained Efficient Frontier Standard Deviation of 
Option Returns Maximum Return, under differing levels of risk 

UniSuper 
Accumulation  
Option (o) 

ooO WW Ζ= 'σ  )( OEF σ  %)1.0( +OEF σ  δσ

σδ )( OEF
 

Cash 1.9% 4.381% 4.762% 3.81 

Capital Stable 5.0% 6.753% 6.798% 0.45 

Conservative Balanced 7.6% 7.750% 7.784% 0.34 

Balanced 9.8% 8.430% 8.459% 0.28 

Growth 11.5% 8.894% 8.920% 0.26 

High Growth 13.3% 9.284% 9.299% 0.14 

 

A1.8.  Reverse Optimisation 

From section 4.1 we know that the maximum of wVww '
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µ − occurs, when the optimal portfolio 

(given by
*

w ) equals µ
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V .   
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We now need to solve for λ such that the constraint in equation 7.1 is obtained.   
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Hence λ is such that: 
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The optimal portfolio
*

w can now be solved by substituting λ  from equation 7.3 into equation 7.2.  As 
such, the portfolio with the maximum expected return (with the greatest permissible tracking error) is 
given by: 
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Where α̂ is derived from equation 4.2.9 and Ψ̂ is derived from equation 5.6. 
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Appendix 2 - Glossary of Symbols 

General notation 

Symbol Denotes 

o 
An investment option or liability type (eg. Cash Option, Capital Stable Option, Defined 
Benefit Division etc). 

ai The asset class of manager i (eg. Australian Equities, International Fixed Interest etc).  

M The number of asset classes that UniSuper utilises. 

o

mW  
The Strategic Asset Allocation (SAA) weight for Option o, within asset class m.  Note that 
W is time independent. 

to ,

2σ̂  The estimated ex-post variance of Option o at time t. 

][ o

tRE  The expected (ex-ante) return from Option o at time t.  

 
Notation relating to the estimation of each manager’s factor exposures 

 

Symbol Denotes 

β̂  
The CAPM beta factor describing the sensitivity between a security and the entire market.  
Also referred to as the systemic risk. 

s

tiw ,
&  Manager i’s holding in security s at time t. 

S The number of all available securities. 

kF

ts,σ̂  
The estimate covariance between the security (s) and an appropriate market factor (

k
F ) at 

time t. 

Fk 
Various macro-economic factors or market indices, where sensitivity to changes in each 

factor is represented by a factor-specific beta coefficient ( tki ,,β ) for a manager i at time t. 

F* 
Residual factor k at time t (i.e. after removing the effects of higher order factors, to 
mitigate the impact of co-integration). 

K 
The number of all applicable factors (the risk free rate is an element of that set).  Typical 
factors are returns on stock indices, interest rates, volatility etc. 

k
* The number of all significant regression factors obtained during a regression estimation. 

tkF ,  The observed returns from factor k at time t. 

][ ,tkFE  The expected return from factor k at time t. 

tki ,,β
 

The beta factor describing the sensitivity between manager i’s exposure to factor k at time 
t. 

 
Factor notation 
 

Symbol Denotes 

mBM
*

 The Fund’s strategic benchmark, for the mth asset class. 

kRP  
The risk premium available from Factor k which cannot be attributed to one of the Fund’s 
benchmarks.   

km,γ̂  The estimated sensitivity between factor k and the mth asset class benchmark ( mBM
*

). 
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Manager specific notation 
 

Symbol Denotes 

ia

tiw ,  
The Fund’s weight (as a proportion of total fund’s under management) for manager i who 
operates in asset class ai at time t.  Note that w is option independent. 

iao

tiw
,

,  The Fund’s weight within Option o, for manager i who operates in asset class ai at time t.   

tw  
The vector of weights of all manager holdings in option o at time t.   

ie 'tw = [ ]Nao

tN

ao

t ww
,

,

,

,1 ...1  

N The total number of managers spanning all asset classes. 

tij ,σ̂  The estimated covariance of net of tax and fees returns between manager i and manager j 
at time t, allowing for manager i and j’s auto-correlation factors. 

ia

ti ,ρ̂  The estimated auto-correlation factor for manager i at time t . 

V  
The variance-covariance matrix of total (net of tax and fees) returns for all N managers, at 
time t. 

ia

ti ,α̂  
The estimated average idiosyncratic or non-diversifiable risk for manager i at time t, 
where manager i invests in asset class ai. 

tki ,,β̂  The estimated manager’s average exposure to factor k at time t. 

ti ,ε  The manager’s residual error term or unexplained returns, with a zero mean. 

r 
The number of months’ data utilised in the regression analysis in the assessment of each 
manager’s factor exposures and idiosyncratic risk. 

ia

ti,µ̂  
The ex-ante expected total return (before tax, net of fees) from manager i at time t in asset 
class ai. 

µ̂  The vector of ex-ante expected annual returns for each manager, at time t. 

toi ,σ̂  The estimated covariance between manager i and Option o at time t. 

 
Notation relating to the estimation of ex-ante Alpha 
 

Symbol Denotes 

λ  An individual investor’s risk aversion parameter. 
oλ&  The estimated risk aversion parameter for Option o. 

N* The number of all available securities. 

eqw  The equilibrium market capitalisation weights of all assets in the market (a 1 x N* vector). 

Σ  The covariance matrix for all N* assets. 

τ  The scaling factor applied to Σ which measures the uncertainty of the priori 

Π the 1 x N* vector of implied equilibrium returns (in excess of the risk free rate) for all 
securities. 

δ  The world-wide risk aversion parameter. 

Α  The vector of observed ex-post alpha or excess returns for each manager. 

E[ ia

ti,α̂ ] The ex-ante expected alpha from manager i, at time t. 

α̂  The vector of each manager’s expected ex-ante alphas. 

Ψ̂  The covariance matrix of each manager’s returns in excess of their factor exposures. 

AQ  The investor’s view of the expected alpha generated from each manager. 

AΩ  The investor’s confidence in each manager’s ability to generate alpha.  
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Endnotes 

                                                      
(1) UniSuper is the industry super fund dedicated to all who work in Australia's higher education 

and research sector.  With over 419,000 members and more than $23 billion in assets (at 30 
June 2008), UniSuper is one of Australia's largest superannuation (i.e. pension) funds. 
 

(2) We considered a range of smoothing periods as well as differing return lags, but concluded 
that a two-year smoothing of both manager/asset returns, as well as their associated risk 
factors, generated stable and interpretable results. 
 

(3) Note the matrix notation utilised in this section, where vectors and matrices have been reduced 

to the constituent parts. As an example, 
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(4) The standard deviations shown in the x-axis of the chart relate to annual standard deviations.  

When UniSuper considers the construction of each Option’s strategic asset allocation, the 
Fund allows for the non-normality of returns over multiple time periods (a particular concern 
for asset classes with low annual volatility but with substantial positive serial correlation).  As 
a result, the SAA for several Options don’t lie on the constrained efficient frontier when 
considering annual standard deviation of returns, but are more efficient when one considers 
the option’s time horizon and standard deviations over longer periods.  However, it should be 
noted that the single asset classes (shown in red italics in the chart) offer less diversification 
than the Fund’s pre-mixed Options, and hence are less efficient regardless of timeframe 
considered. 


